Convert a noteworthy string to a tibble data frame and include additional derivative variables.
character, a noteworthy string. Alternatively, a music object
or a phrase object, in which case info
is ignored.
NULL
or character, a note info string.
character, key signature, only required for inclusion of scale degrees.
character, defaults to "diatonic"
. Only used in conjunction
with key
, this can be used to alter scale degrees. Not any arbitrary
combination of valid key
and valid scale
is valid. See scale_degree()
.
character, how to structure columns containing multiple values per chord/row of data frame. See details.
character, format for scale intervals. See
scale_interval()
.
a tibble data frame
If info
is provided or notes
is a phrase object, the resulting data frame
also contains note durations and other info variables. The duration
column
is always included in the output even as a vector of NA
s when info = NULL
.
This makes it more explicit that a given music data frame was generated
without any time information for the timesteps. Other note info columns are
not included in this case.
For some derived column variables the root note (lowest pitch) in chord is used. This is done for pitch intervals and scale intervals between adjacent timesteps. This also occurs for scale degrees.
chord = "root"
additionally collapses columns like semitone, octave, and
frequency to the value for the root note so that all rows contain one numeric
value. chord = "list"
retains full information as list columns.
chord = "character"
collapses into strings so that values are readily
visible when printing the table, but information is not stripped and can be
recovered without recomputing from the original pitches.
x <- "a, b, c d e f g# a r ac'e' a c' e' c' r r r a"
as_music_df(x, key = "c", scale = "major")
#> # A tibble: 18 × 11
#> duration pitch note semitone octave freq key scale scale_deg pitch_int
#> <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <int>
#> 1 NA a, a 57 2 110. c major 6 NA
#> 2 NA b, b 59 2 123. c major 7 2
#> 3 NA c c 48 3 131. c major 1 1
#> 4 NA d d 50 3 147. c major 2 2
#> 5 NA e e 52 3 165. c major 3 2
#> 6 NA f f 53 3 175. c major 4 1
#> 7 NA g# g# 56 3 208. c major NA 3
#> 8 NA a a 57 3 220 c major 6 1
#> 9 NA r r NA NA NA c major NA NA
#> 10 NA ac'e' ace 57 3 220 c major 1 0
#> 11 NA a a 57 3 220 c major 6 0
#> 12 NA c' c 48 4 262. c major 1 3
#> 13 NA e' e 52 4 330. c major 3 4
#> 14 NA c' c 48 4 262. c major 1 -4
#> 15 NA r r NA NA NA c major NA NA
#> 16 NA r r NA NA NA c major NA NA
#> 17 NA r r NA NA NA c major NA NA
#> 18 NA a a 57 3 220 c major 6 -3
#> # ℹ 1 more variable: scale_int <chr>
as_music_df(x, key = "am", scale = "harmonic_minor", si_format = "ad_abb")
#> # A tibble: 18 × 11
#> duration pitch note semitone octave freq key scale scale_deg pitch_int
#> <chr> <chr> <chr> <int> <int> <dbl> <chr> <chr> <int> <int>
#> 1 NA a, a 57 2 110. am harmoni… 1 NA
#> 2 NA b, b 59 2 123. am harmoni… 2 2
#> 3 NA c c 48 3 131. am harmoni… 3 1
#> 4 NA d d 50 3 147. am harmoni… 4 2
#> 5 NA e e 52 3 165. am harmoni… 5 2
#> 6 NA f f 53 3 175. am harmoni… 6 1
#> 7 NA g# g# 56 3 208. am harmoni… 7 3
#> 8 NA a a 57 3 220 am harmoni… 1 1
#> 9 NA r r NA NA NA am harmoni… NA NA
#> 10 NA ac'e' ace 57 3 220 am harmoni… 3 0
#> 11 NA a a 57 3 220 am harmoni… 1 0
#> 12 NA c' c 48 4 262. am harmoni… 3 3
#> 13 NA e' e 52 4 330. am harmoni… 5 4
#> 14 NA c' c 48 4 262. am harmoni… 3 -4
#> 15 NA r r NA NA NA am harmoni… NA NA
#> 16 NA r r NA NA NA am harmoni… NA NA
#> 17 NA r r NA NA NA am harmoni… NA NA
#> 18 NA a a 57 3 220 am harmoni… 1 -3
#> # ℹ 1 more variable: scale_int <chr>
a <- notate("8", "Start here.")
time <- paste(a, "8^*2 16-_ 4.. 16( 16)( 2) 2 4. t8- t8 t8- 8[accent]*4 1")
d1 <- as_music_df(x, time)
d1
#> # A tibble: 18 × 14
#> duration pitch note semitone octave freq pitch_int scale_int slur slide
#> <chr> <chr> <chr> <int> <int> <dbl> <int> <chr> <chr> <lgl>
#> 1 8 a, a 57 2 110. NA NA NA FALSE
#> 2 8 b, b 59 2 123. 2 M2 NA FALSE
#> 3 8 c c 48 3 131. 1 m2 NA FALSE
#> 4 16 d d 50 3 147. 2 M2 NA FALSE
#> 5 4.. e e 52 3 165. 2 M2 NA FALSE
#> 6 16 f f 53 3 175. 1 m2 on FALSE
#> 7 16 g# g# 56 3 208. 3 m3 hold FALSE
#> 8 2 a a 57 3 220 1 m2 off FALSE
#> 9 2 r r NA NA NA NA NA NA FALSE
#> 10 4. ac'e' ace 57 3 220 0 P1 NA FALSE
#> 11 t8 a a 57 3 220 0 P1 NA TRUE
#> 12 t8 c' c 48 4 262. 3 m3 NA FALSE
#> 13 t8 e' e 52 4 330. 4 M3 NA TRUE
#> 14 8 c' c 48 4 262. -4 M3 NA FALSE
#> 15 8 r r NA NA NA NA NA NA FALSE
#> 16 8 r r NA NA NA NA NA NA FALSE
#> 17 8 r r NA NA NA NA NA NA FALSE
#> 18 1 a a 57 3 220 -3 m3 NA FALSE
#> # ℹ 4 more variables: bend <lgl>, dotted <int>, articulation <chr>,
#> # annotation <chr>
# Go directly from music object to data frame
m1 <- as_music(x, time)
d2 <- as_music_df(m1)
identical(d1, d2)
#> [1] TRUE
# Go directly from phrase object to data frame
p1 <- phrase("a b cgc'", "4-+ 4[accent] 2", 5)
identical(as_music_df(as_music("a4-+;5 b[accent] cgc'2")), as_music_df(p1))
#> [1] TRUE