clim_dist_monthly.Rd
Extract climate data and estimate monthly spatial probability distributions.
clim_dist_monthly(inputs, in_dir = snapdef()$ar5dir, out_dir = snapdef()$ar5dir_dist_monthly, na.rm = TRUE, density.args = list(n = 200, adjust = 0.1), sample.size = 10000, verbose = TRUE, overwrite = FALSE, move_akcan = TRUE, mc.cores = 32)
inputs | data frame of inputs (one row). See details. |
---|---|
in_dir | input directory, e.g., |
out_dir | output directory, e.g., |
na.rm | logical, remove NAs. |
density.args | arguments list passed to |
sample.size | numeric, sample size. |
verbose | logical, verbose progress. |
overwrite | logical, overwrite existing files. |
move_akcan | logical, relocate the |
mc.cores | number of CPUs when processing years in parallel. Defaults to 32 assuming Atlas compute node context. |
invisible, writes files.
inputs
generally comes from clim_inputs_table. clim_dist_monthly
processes data sets referred to by
one row of this data frame at a time. Internally processing uses 32 CPUs on an Atlas compute node. It is expected that the different
data sets in the full inputs
be processed serially. See example call below.
# NOT RUN { purrr::walk(1:nrow(inputs), ~slice(inputs, .x) %>% clim_dist_monthly()) # }